1,322 research outputs found

    Application of the exact regularized point particle method (ERPP) to particle laden turbulent shear flows in the two-way coupling regime

    Get PDF
    The Exact Regularized Point Particle method (ERPP), which is a new inter-phase momentum coupling ap- proach, is extensively used for the first time to explore the response of homogeneous shear turbulence in presence of different particle populations. Particle suspensions with different Stokes number and/or mass loading are considered. Particles with Kolmogorov Stokes number of order one suppress turbulent kinetic energy when the mass loading is increased. In contrast, heavier particles leave this observable almost un- changed with respect to the reference uncoupled case. Turbulence modulation is found to be anisotropic, leaving the streamwise velocity fluctuations less affected by unitary Stokes number particles whilst it is increased by heavier particles. The analysis of the energy spectra shows that the turbulence modulation occurs throughout the entire range of resolved scales leading to non-trivial augmentation/depletion of the energy content among the different velocity components at different length-scales. In this regard, the ERPP approach is able to provide convergent statistics up to the smallest dissipative scales of the flow, giving the opportunity to trust the ensuing results. Indeed, a substantial modification of the turbu- lent fluctuations at the smallest-scales, i.e. at the level of the velocity gradients, is observed due to the particle backreaction. Small scale anisotropies are enhanced and fluctuations show a greater level of in- termittency as measured by the probability distribution function of the longitudinal velocity increments and by the corresponding flatness

    Exact regularized point particle method for multi-phase flows in the two-way coupling regime

    Get PDF
    Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scales particles clustering or preferential spatial accumulation have been explained and understood. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange between the carrier and the suspended phase, certainly relevant at increasing mass loading. In such regime, partially investigated in the past by the so-called Particle In Cell (PIC) method, much is still to be learned about the dynamics of the disperse phase and the ensuing alteration of the carrier flow. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. In fact, the momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped, point masses which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between particles and fluid which avoids any "ah hoc" assumption. The approach is suited for high efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space around the actual particle position. As will be shown, hundred thousands particles can therefore be handled at an affordable computational cost as demonstrated by a preliminary application to a particle laden turbulent shear flow.Comment: Submitted to Journal of Fluid Mechanics, 56 pages, 15 figure

    Experimental Analysis on a Low Crested Rubble Mound Breakwater

    Get PDF
    In the present study, the flow induced by waves around a physical model of a detached low crested rubble mound breakwater is investigated experimentally. The model was designed with a scale factor of 1/30, parallel to the shoreline, in a coast of constant slope 1/15, assuming Froude similarity. For the design of the rock armor layer, the van der Meer\u27s hydraulic stability formula was applied. Two wave conditions were examined: one with an offshore wave height of 2 m (Case A) and one with the maximum annual characteristic offshore wave height (Case B), calculated in prototype scale. Measurements include surface elevation time series, as well as three-dimensional velocity time series of the flow around the model. Results include flow patterns on the seaward and leeward side of the breakwater for both wave conditions, as well as transmission and reflection coefficients. Along the leeward side, the current profiles have an offshore direction close to the bottom and a shoreward direction close to the free surface where the reduction of the water depth induced an acceleration of the flow, influenced by the overtopping. Transmission and reflection coefficients data were compared with literature equations. The comparison revealed that literature equations tended to underestimate the transmission coefficient due to the critical condition represented by a zero free-board breakwater. About the reflection coefficient, it was found that the literature equations tend to overestimate its value, possibly due to the fact that these formulas were obtained by experiments performed with emerged breakwaters

    Scaling properties in the production range of shear dominated flows

    Full text link
    Recent developments in turbulence are focused on the effect of large scale anisotropy on the small scale statistics of velocity increments. According to Kolmogorov, isotropy is recovered in the large Reynolds number limit as the scale is reduced and, in the so-called inertial range, universal features -namely the scaling exponents of structure functions - emerge clearly. However this picture is violated in a number of cases, typically in the high shear region of wall bounded flows. The common opinion ascribes this effect to the contamination of the inertial range by the larger anisotropic scales, i.e. the residual anisotropy is assumed as a weak perturbation of an otherwise isotropic dynamics. In this case, given the rotational invariance of the Navier-Stokes equations, the isotropic component of the structure functions keeps the same exponents of isotropic turbulence. This kind of reasoning fails when the anisotropic effects are strong as in the production range of shear dominated flows. This regime is analyzed here by means of both numerical and experimental data for a homogeneous shear flow. A well defined scaling behavior is found to exist, with exponents which differ substantially from those of classical isotropic turbulence. Contrary to what predicted by the perturbation approach, such a deep alteration concerns the isotropic sector itself. The general validity of these results is discussed in the context of turbulence near solid walls, where more appropriate closure models for the coarse grained Navier-Stokes equations would be advisable.Comment: 4 pages, 4 figure

    Osp(N|4) supermultiplets as conformal superfields on \partial AdS_4 and the generic form of N=2, D=3 gauge theories

    Full text link
    In this paper we fill a necessary gap in order to realize the explicit comparison between the Kaluza Klein spectra of supergravity compactified on AdS_4 x X^7 and superconformal field theories living on the world volume of M2-branes. On the algebraic side we consider the superalgebra Osp(N|4) and we study the double interpretation of its irreducible representations either as supermultiplets of particle states in the bulk or as conformal superfields on the boundary. On the lagrangian field theory side we construct, using rheonomy rather than superfield techniques, the generic form of an N=2, d=3 gauge theory. Indeed the superconformal multiplets are supposed to be composite operators in a suitable gauge theory.Comment: 50+1 pages, 6 eps figures, minor typos corrected, references adde

    Transport of micro-bubbles in turbulent shear flows

    Get PDF
    The dynamics of micro-bubbles, which are typical in many industrial applications, is addressed by means the Direct Numerical Simulations (DNS) of two prototypal flows, namely a homogeneous shear flow and a fully developed pipe flows. This preliminary study has a two-fold purpose. The homogenous turbulent shear flow is useful to characterize the bubble dynamics in terms of their eventual clustering properties which is expected to be controlled by the Stokes number. The time history of the fluid pressure experienced by the bubbles during their evolution is recorded and successively employed to force the Rayleigh-Plesset equation [1]. The ensuing data are used to address a posteriori the bubble diameter statistics in view of bubble collapse induced by strong and intermittent turbulent pressure fluctuations. The turbulent pipe flow simulations serve to address the bubble dynamics in wall bounded flows. Here the bubbles are observed to accumulate in the near-wall region with different intensity depending on the bubble dimensions

    Hydrodynamics of flagellated microswimmers near free-slip interfaces

    Get PDF
    The hydrodynamics of a flagellated microorganism is investigated when swimming close to a planar free-slip surface by means of numerical solu- tions of the Stokes equations obtained via a Boundary Element Method. Depending on the initial condition, the swimmer can either escape from the free-slip surface or collide with the boundary. Interestingly, the mi- croorganism does not exhibit a stable orbit. Independently of escape or attraction to the interface, close to a free-slip surface, the swimmer fol- lows a counter-clockwise trajectory, in agreement with experimental find- ings, [15]. The hydrodynamics is indeed modified by the free-surface. In fact, when the same swimmer moves close to a no-slip wall, a set of initial conditions exists which result in stable orbits. Moreover when moving close to a free-slip or a no-slip boundary the swimmer assumes a different orientation with respect to its trajectory. Taken together, these results contribute to shed light on the hydrodynamical behaviour of microorgan- isms close to liquid-air interfaces which are relevant for the formation of interfacial biofilms of aerobic bacteria

    Superhydrophobic surfaces to reduce form drag in turbulent separated flows

    Get PDF
    The drag force acting on a body moving in a fluid has two components, friction drag due to fluid viscosity and form drag due to flow separation behind the body. When present, form drag is usually the most significant between the two, and in many applications, streamlining efficiently reduces or prevents flow separation. As studied here, when the operating fluid is water, a promising technique for form drag reduction is to modify the walls of the body with superhydrophobic surfaces. These surfaces entrap gas bubbles in their asperities, avoiding the direct contact of the liquid with the wall. Superhydrophobic surfaces have been vastly studied for reducing friction drag. We show they are also effective in reducing flow separation in turbulent flow and therefore in reducing the form drag. Their conceptual effectiveness is demonstrated by performing direct numerical simulations of turbulent flow over a bluff body, represented by a bump inside a channel, which is modified with different superhydrophobic surfaces. The approach shown here contributes to new and powerful techniques for drag reduction on bluff bodies
    • …
    corecore